COBORDISM OBSTRUCTIONS TO INDEPENDENT VECTOR FIELDS
نویسندگان
چکیده
منابع مشابه
Differential descent obstructions over function fields
We study a new obstruction to the existence of integral and rational points for algebraic varieties over function fields, the differential descent obstruction. We prove that that is the only obstruction to the existence of integral points in affine varieties in characteristic zero and also, in most cases, for rational points on curves in arbitrary characteristic.
متن کاملconstruction of vector fields with positive lyapunov exponents
in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...
15 صفحه اولConcurrent vector fields on Finsler spaces
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...
متن کاملVector Fields Tangent to Foliations
We investigate in this paper the topological stability of pairs (ω,X), where ω is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by ω.
متن کاملAn introduction to cobordism
Cobordism theory is the study of manifolds modulo the cobordism relation: two manifolds are considered the same if their disjoint union is the boundary of another manifold. This may seem like a strange thing to study, but there appears to be (at least) two good reasons why one may want to take a look at such a thing. The first reason has to do with the homology of manifolds. One can imagine try...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mathematics
سال: 2014
ISSN: 0033-5606,1464-3847
DOI: 10.1093/qmath/hau011